Back to Search
Start Over
Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis.
- Source :
-
Plant physiology [Plant Physiol] 2009 Feb; Vol. 149 (2), pp. 916-28. Date of Electronic Publication: 2008 Nov 26. - Publication Year :
- 2009
-
Abstract
- The apoplast of plant cells, which carries out multiple functions in plant metabolism and signaling, is not only a barrier but also the linker between the environment and the protoplast. To investigate the role of apoplastic proteins in the salt stress response, 10-d-old rice (Oryza sativa) plants were treated with 200 mM NaCl for 1, 3, or 6 h, and the soluble apoplast proteins were extracted for differential analysis compared with untreated controls using two-dimensional electrophoresis. Ten protein spots that increased or decreased significantly in abundance were identified by mass spectrometry. These proteins included some well-known biotic and abiotic stress-related proteins. Among them, an apoplastic protein, with extracellular domain-like cysteine-rich motifs (DUF26), O. sativa root meander curling (OsRMC), has shown drastically increased abundance in response to salt stress during the initial phase. OsRMC RNA interference transgenic rice has been generated to assess the function of OsRMC in the salt stress response. The results show that knocking down the expression level of OsRMC in transgenic rice led to insensitive seed germination, enhanced growth inhibition, and improved salt stress tolerance to NaCl than in untransgenic plants. These results indicate that plant apoplastic proteins may have important roles in the plant salt stress response.
- Subjects :
- Cloning, Molecular
Codon
Electrophoresis, Gel, Two-Dimensional
Malondialdehyde metabolism
Mass Spectrometry
Molecular Sequence Data
Oryza drug effects
Plant Proteins chemistry
Plant Proteins genetics
Plant Proteins isolation & purification
Plant Roots drug effects
Promoter Regions, Genetic
RNA, Messenger genetics
RNA, Plant genetics
Oryza metabolism
Plant Proteins metabolism
Plant Roots physiology
Sodium Chloride pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 0032-0889
- Volume :
- 149
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Plant physiology
- Publication Type :
- Academic Journal
- Accession number :
- 19036832
- Full Text :
- https://doi.org/10.1104/pp.108.131144