Back to Search Start Over

Effect of pH on the activity and stability of clastogens in the in vitro chromosomal aberration test with Chinese hamster ovary K1 cells.

Authors :
Morita T
Nagaki T
Fukuda I
Okumura K
Source :
Mutation research [Mutat Res] 1991 Mar; Vol. 262 (3), pp. 159-66.
Publication Year :
1991

Abstract

The effect of the pH of the medium on the clastogenic activity of several direct-acting and indirect clastogens was evaluated in the in vitro chromosomal aberration test with Chinese hamster ovary K1 cells. Furthermore, the stability of the chemicals in the cell culture medium was measured by HPLC over the pH range of 5.0-11.0. The activity of the direct-acting clastogens mitomycin C (MMC), N-ethyl-N'-nitro-N-nitrosoguanidine (ENNG) and 4-nitroquinoline-1-oxide (4NQO) at various pH values depended on their stability. In the case of ENNG, its clastogenic activity decreased to about one-fifth at pH 9 but was about twice as high at acidic pH compared with that at pH 7.4. This is consistent with the observation that ENNG is unstable at basic pH; the residual content of ENNG was 0.5% of the initial amount in cell culture medium at pH 9.0 after a 2-h incubation. 4NQO was unstable at strongly basic pH (pH 10-11), and MMC was unstable at pH 5.0 and pH 11.0. The frequencies of chromosomal aberrations induced by MMC and ENNG were correspondingly decreased at these pH values. On the other hand, the clastogenicities of the indirect clastogens 7,12-dimethylbenz[a]anthracene (DMBA), benzo[a]pyrene (B(a)P) and dimethylnitrosamine (DMN), which require metabolic activation, were reduced at pH 10-11 and pH 5.8. The frequencies of chromosomal aberrations at these pHs were almost equal to negative control values. These chemicals were stable in the medium in the absence of S9 mix over the pH range of 5.0-11.0. Thus clastogenicity of indirect-acting clastogens is reduced under extreme pH conditions, probably because of the instability or nonformation of the active form. The present results indicate that the clastogenic activity of any compound will depend on its stability in the medium irrespective of its direct- or indirect-acting nature. In addition, some of the chemicals that are recognized as clastogens presumably might induce chromosomal aberrations by means of acidic pH itself. It is, therefore, important to take account of the pH of the treatment medium in evaluating the clastogenicity of chemicals.

Details

Language :
English
ISSN :
0027-5107
Volume :
262
Issue :
3
Database :
MEDLINE
Journal :
Mutation research
Publication Type :
Academic Journal
Accession number :
1900572
Full Text :
https://doi.org/10.1016/0165-7992(91)90016-w