Back to Search Start Over

Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity.

Authors :
Maghsoodi B
Poon MM
Nam CI
Aoto J
Ting P
Chen L
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2008 Oct 14; Vol. 105 (41), pp. 16015-20. Date of Electronic Publication: 2008 Oct 07.
Publication Year :
2008

Abstract

Homeostatic plasticity is thought to play an important role in maintaining the stability of neuronal circuits. During one form of homeostatic plasticity, referred to as synaptic scaling, activity blockade leads to a compensatory increase in synaptic transmission by stimulating in dendrites the local translation and synaptic insertion of the AMPA receptor subunit GluR1. We have previously shown that all-trans retinoic acid (RA) mediates activity blockade-induced synaptic scaling by activating dendritic GluR1 synthesis and that this process requires RARalpha, a member of the nuclear RA receptor family. This result raised the question of where RARalpha is localized in dendrites and whether its localization is regulated by RA and/or activity blockade. Here, we show that activity blockade or RA treatment in neurons enhances the concentration of RARalpha in the dendritic RNA granules and activates local GluR1 synthesis in these RNA granules. Importantly, the same RNA granules that contain RARalpha also exhibit an accumulation of GluR1 protein but with a much slower time course than that of RARalpha, suggesting that the former regulates the latter. Taken together, our results provide a direct link between dendritically localized RARalpha and local GluR1 synthesis in RNA granules during RA-mediated synaptic signaling in homeostatic synaptic plasticity.

Details

Language :
English
ISSN :
1091-6490
Volume :
105
Issue :
41
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
18840692
Full Text :
https://doi.org/10.1073/pnas.0804801105