Back to Search Start Over

Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation.

Authors :
Seo YH
Jung HJ
Shin HT
Kim YM
Yim H
Chung HY
Lim IK
Yoon G
Source :
Aging cell [Aging Cell] 2008 Dec; Vol. 7 (6), pp. 894-907. Date of Electronic Publication: 2008 Sep 08.
Publication Year :
2008

Abstract

Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence. Glycogen accumulation, glycogen synthase (GS) activation, and glycogen synthase kinase 3 (GSK3) inactivation commonly occurred in diverse cellular senescence models, including the liver tissues of aging F344 rats. Subcytotoxic concentrations of GSK3 inhibitors (SB415286 and LiCl) were sufficient to induce cellular senescence with increased glycogenesis. Interestingly, the SB415286-induced glycogenesis was irreversible, as were increased levels of reactive oxygen species and gain of senescence phenotypes. Blocking GSK3 activity using siRNA or dominant negative mutant (GSK3beta-K85A) also effectively induced senescence phenotypes, and GS knock-down significantly attenuated the stress-induced senescence phenotypes. Taken together, these results clearly demonstrate that augmented glycogenesis is not only common, but is also directly linked to cellular senescence and aging, suggesting GSK3 and GS as novel modulators of senescence, and providing new insight into the metabolic backgrounds of aging and aging-related pathogenesis.

Details

Language :
English
ISSN :
1474-9726
Volume :
7
Issue :
6
Database :
MEDLINE
Journal :
Aging cell
Publication Type :
Academic Journal
Accession number :
18782348
Full Text :
https://doi.org/10.1111/j.1474-9726.2008.00436.x