Back to Search Start Over

Scope and limitations of the designer proline-rich antibacterial peptide dimer, A3-APO, alone or in synergy with conventional antibiotics.

Authors :
Cassone M
Vogiatzi P
La Montagna R
De Olivier Inacio V
Cudic P
Wade JD
Otvos L Jr
Source :
Peptides [Peptides] 2008 Nov; Vol. 29 (11), pp. 1878-86. Date of Electronic Publication: 2008 Aug 05.
Publication Year :
2008

Abstract

The proline-rich antimicrobial peptide dimer, A3-APO, was designed based on a statistical analysis of native antibacterial peptide and protein sequences. Analysis of a series of structural analogs failed to identify any single or multiple amino acid modification or architectural changes that would significantly improve its potential as a clinical therapeutic. However, a single chain Chex1-Arg20 version, a natural in vivo metabolite, showed a 2 to 8-fold increase in activity against test Enterobacteriaceae strains. In addition to bacterial species close to Escherichia coli in phylogeny, A3-APO analogs were able to effectively kill Pseudomonas aeruginosa and Staphylococcus saprophyticus. Antibacterial efficacy analysis together with biochemical experiments provided further evidence for a multiple mode of action of A3-APO that includes binding and inhibition of the bacterial heat shock protein DnaK. Through inactivating of resistance enzymes, A3-APO was able to recover the lost activity of conventional antibiotics including chloramphenicol, beta-lactams, sulfonamides or trimethoprim against multidrug resistant strains with partial or full synergy. However, the synergy appeared to be individual strain and small molecule drug combination-dependent.

Details

Language :
English
ISSN :
0196-9781
Volume :
29
Issue :
11
Database :
MEDLINE
Journal :
Peptides
Publication Type :
Academic Journal
Accession number :
18721837
Full Text :
https://doi.org/10.1016/j.peptides.2008.07.016