Back to Search Start Over

The local electronic structure of alpha-Li3N.

Authors :
Fister TT
Seidler GT
Shirley EL
Vila FD
Rehr JJ
Nagle KP
Linehan JC
Cross JO
Source :
The Journal of chemical physics [J Chem Phys] 2008 Jul 28; Vol. 129 (4), pp. 044702.
Publication Year :
2008

Abstract

New theoretical and experimental investigations of the occupied and unoccupied local electronic densities of states (DOS) are reported for alpha-Li(3)N. Band-structure and density-functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS find less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering, RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is a good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s-and p-type components of the unoccupied local final DOS projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final DOS due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generally applicable for low atomic number compounds.

Details

Language :
English
ISSN :
1089-7690
Volume :
129
Issue :
4
Database :
MEDLINE
Journal :
The Journal of chemical physics
Publication Type :
Academic Journal
Accession number :
18681665
Full Text :
https://doi.org/10.1063/1.2949550