Back to Search
Start Over
Hydrolytic and photoinduced degradation of tribenuron methyl studied by HPLC-DAD-MS/MS.
- Source :
-
Journal of the American Society for Mass Spectrometry [J Am Soc Mass Spectrom] 2008 Aug; Vol. 19 (8), pp. 1221-9. Date of Electronic Publication: 2008 May 23. - Publication Year :
- 2008
-
Abstract
- The paper studies, with the help of HPLC-DAD-MS/MS technique, the hydrolytic and photoinduced degradation processes that take place in aqueous solutions of tribenuron methyl, both when preserved in the dark and when undergoing solar box irradiation under conditions that simulate sun light. The results indicate that the degradation products formed by hydrolysis alone and by photoirradiation are the same, but kinetics of the hydrolysis reaction is much slower. The degradation products are identified as 2-methoxy-4-methylamino-6-methyl-1,3,5-triazine (P1), methyl 2-aminosulfonylbenzoate (P2), and saccharin (P3) and quantified. Ecotoxicological biotests performed on 0.1 microg L(-1) photoirradiated solutions of the herbicide give a border line toxicity situation comparable to that of the precursor and indicate that the herbicide is characterized by low persistence in the environment, as required. Its degradation, however, does not lead to mineralization but to the formation of products of comparable toxicity. To evaluate the matrix effects, the photodegradation of the herbicide is also studied in the presence of rice paddy waters: the process is slower than in ultrapure water but leads to the same products. Experiments performed for comparison by irradiating ultrapure water solutions with UV lamp (254 nm) show that the degradation process is not only faster with respect to sunlight, but gives a different pathway, without in anyway leading to mineralization.
- Subjects :
- Agriculture
Arylsulfonates radiation effects
Chromatography, High Pressure Liquid
Darkness
Herbicides radiation effects
Hydrolysis
Kinetics
Light
Mass Spectrometry
Oryza
Oxygen chemistry
Pesticide Residues analysis
Photochemistry
Solutions
Sunlight
Ultraviolet Rays
Water Pollutants, Chemical analysis
Arylsulfonates chemistry
Herbicides chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1044-0305
- Volume :
- 19
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of the American Society for Mass Spectrometry
- Publication Type :
- Academic Journal
- Accession number :
- 18571428
- Full Text :
- https://doi.org/10.1016/j.jasms.2008.05.009