Back to Search Start Over

Modulation of sarcoplasmic reticulum function by PST2744 [istaroxime; (E,Z)-3-((2-aminoethoxy)imino) androstane-6,17-dione hydrochloride)] in a pressure-overload heart failure model.

Authors :
Rocchetti M
Alemanni M
Mostacciuolo G
Barassi P
Altomare C
Chisci R
Micheletti R
Ferrari P
Zaza A
Source :
The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 2008 Sep; Vol. 326 (3), pp. 957-65. Date of Electronic Publication: 2008 Jun 06.
Publication Year :
2008

Abstract

PST2744 [Istaroxime; (E,Z)-3-((2-aminoethoxy)imino) androstane-6,17-dione hydrochloride)] is a novel inotropic agent that enhances sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA) 2 activity. We investigated the istaroxime effect on Ca(2+) handling abnormalities in myocardial hypertrophy/failure (HF). Guinea pig myocytes were studied 12 weeks after aortic banding (AoB) and compared with those of sham-operated animals (sham). The gain of calcium-induced Ca(2+) release (CICR), sarcoplasmic reticulum (SR) Ca(2+) content, Na(+)/Ca(2+) exchanger (NCX) function, and the rate of SR reloading after caffeine-induced depletion (SR Ca(2+) uptake, measured during NCX blockade) were evaluated by measurement of cytosolic Ca(2+) and membrane currents. HF characterization: AoB caused hypertrophy and failure in 100 and 25% of animals, respectively. Although CICR gain during constant pacing was preserved, SR Ca(2+) content and SR Ca(2+) uptake were strongly depressed. Resting Ca(2+) and the slope of the Na(+)/Ca(2+) exchanger current (I(NCX))/Ca(2+) relationship were unchanged by AoB. Istaroxime effects: CICR gain, SR Ca(2+) content, and SR Ca(2+) uptake rate were increased by istaroxime in sham myocytes and, to a significantly larger extent, in AoB myocytes; this led to almost complete recovery of SR Ca(2+) uptake in AoB myocytes. Istaroxime increased resting Ca(2+) and the slope of the I(NCX)/Ca(2+) relationship similarly in sham and AoB myocytes. Istaroxime failed to increase SERCA activity in skeletal muscle microsomes devoid of phospholamban. Thus, clear-cut abnormalities in Ca(2+) handling occurred in this model of hypertrophy, with mild decompensation. Istaroxime enhanced SR function more in HF myocytes than in normal ones; almost complete drug-induced recovery suggests a purely functional nature of SR dysfunction in this HF model.

Details

Language :
English
ISSN :
1521-0103
Volume :
326
Issue :
3
Database :
MEDLINE
Journal :
The Journal of pharmacology and experimental therapeutics
Publication Type :
Academic Journal
Accession number :
18539651
Full Text :
https://doi.org/10.1124/jpet.108.138701