Back to Search
Start Over
Characterization of the antioxidant enzyme, thioredoxin peroxidase, from the carcinogenic human liver fluke, Opisthorchis viverrini.
- Source :
-
Molecular and biochemical parasitology [Mol Biochem Parasitol] 2008 Aug; Vol. 160 (2), pp. 116-22. Date of Electronic Publication: 2008 May 02. - Publication Year :
- 2008
-
Abstract
- The human liver fluke, Opisthorchis viverrini, induces inflammation of the hepatobiliary system. Despite being constantly exposed to inimical oxygen radicals released from inflammatory cells, the parasite survives for many years. The mechanisms by which it avoids oxidative damage are unknown. In this study, thioredoxin peroxidase (TPx), a member of the peroxiredoxin superfamily, was cloned from an O. viverrini cDNA library. O. viverrini TPx cDNA encoded a polypeptide of 212 amino acid residues, of molecular mass 23.57kDa. The putative amino acid sequence shared 60-70% identity with TPXs from other helminths and from mammals, and phylogenetic analysis revealed a close relationship between TPxs from O. viverrini and other trematodes. Recombinant O. viverrini TPx was expressed as soluble protein in Escherichia coli. The recombinant protein dimerized, and its antioxidant activity was deduced by observing protection of nicking of supercoiled plasmid DNA by hydroxyl radicals. Antiserum raised against O. viverrini TPx recognized native proteins from egg, metacercaria and adult developmental stages of the liver fluke and excretory-secretory products released by adult O. viverrini. Immunolocalization studies revealed ubiquitous expression of TPx in O. viverrini organs and tissues. TPx was also detected in bile fluid and bile duct epithelial cells surrounding the flukes 2 weeks after infection of hamsters with O. viverrini. In addition, TPx was observed in the secondary (small) bile ducts where flukes cannot reach due to their large size. These results suggested that O. viverrini TPx plays a significant role in protecting the parasite against damage induced by reactive oxygen species from inflammation.
- Subjects :
- Amino Acid Sequence
Animals
Antioxidants metabolism
Cloning, Molecular
Cricetinae
DNA metabolism
Dimerization
Escherichia coli genetics
Gene Expression
Helminthiasis, Animal parasitology
Molecular Sequence Data
Molecular Weight
Open Reading Frames
Opisthorchis chemistry
Opisthorchis genetics
Peroxiredoxins chemistry
Peroxiredoxins metabolism
Phylogeny
Sequence Alignment
Sequence Analysis, DNA
Sequence Homology, Amino Acid
Antioxidants isolation & purification
Opisthorchis enzymology
Peroxiredoxins genetics
Peroxiredoxins isolation & purification
Subjects
Details
- Language :
- English
- ISSN :
- 0166-6851
- Volume :
- 160
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Molecular and biochemical parasitology
- Publication Type :
- Academic Journal
- Accession number :
- 18538872
- Full Text :
- https://doi.org/10.1016/j.molbiopara.2008.04.010