Back to Search Start Over

Modifications in solvent clusters embedded along the fibers of a cellulose polymer network cause paper degradation.

Authors :
De Spirito M
Missori M
Papi M
Maulucci G
Teixeira J
Castellano C
Arcovito G
Source :
Physical review. E, Statistical, nonlinear, and soft matter physics [Phys Rev E Stat Nonlin Soft Matter Phys] 2008 Apr; Vol. 77 (4 Pt 1), pp. 041801. Date of Electronic Publication: 2008 Apr 01.
Publication Year :
2008

Abstract

Plants, algae, and their derivatives (paper, textiles, etc.) are complex systems that are chiefly composed of a web of cellulose fibers. The arrangement of solvents within the polymeric structure is of great importance since cellulose degradation is strongly influenced by water accessibility and external agents. In this paper we develop a model that is able to deconvolve the scattering contributions of both polymeric structures and solvent clusters trapped along the polymeric fibers. The surface morphology of cellulose fibers and the spatial distribution of water-filled pores and their dimensions have been recovered from small angle neutron scattering and atomic force microscopy data in function with paper degradation. In addition to providing a boost to the effort to preserve cellulose-supported material (included cultural heritage), the relevance of our model resides in the exploitation of a large number of biopolymer networks that are known to share structures similar to that of cellulose.

Details

Language :
English
ISSN :
1539-3755
Volume :
77
Issue :
4 Pt 1
Database :
MEDLINE
Journal :
Physical review. E, Statistical, nonlinear, and soft matter physics
Publication Type :
Academic Journal
Accession number :
18517646
Full Text :
https://doi.org/10.1103/PhysRevE.77.041801