Back to Search Start Over

Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes.

Authors :
Pritchard S
Votta BJ
Kumar S
Guilak F
Source :
Osteoarthritis and cartilage [Osteoarthritis Cartilage] 2008 Dec; Vol. 16 (12), pp. 1466-73. Date of Electronic Publication: 2008 May 20.
Publication Year :
2008

Abstract

Objective: Articular chondrocytes respond to osmotic stress with transient changes in cell volume and the intracellular concentration of calcium ion ([Ca(2+)](i)). The goal of this study was to examine the hypothesis that interleukin-1 (IL-1), a pro-inflammatory cytokine associated with osteoarthritis, influences osmotically induced Ca(2+) signaling.<br />Methods: Fluorescence ratio imaging was used to measure [Ca(2+)](i) and cell volume in response to hypo- or hyper-osmotic stress in isolated porcine chondrocytes, with or without pre-exposure to 10-ng/ml IL-1alpha. Inhibitors of IL-1 (IL-1 receptor antagonist, IL-1Ra), Ca(2+) mobilization (thapsigargin, an inhibitor of Ca-ATPases), and cytoskeletal remodeling (toxin B, an inhibitor of the Rho family of small GTPases) were used to determine the mechanisms involved in increased [Ca(2+)](i), F-actin remodeling, volume adaptation and active volume recovery.<br />Results: In response to osmotic stress, chondrocytes exhibited transient increases in [Ca(2+)](i), generally followed by decaying oscillations. Pre-exposure to IL-1 significantly inhibited regulatory volume decrease (RVD) following hypo-osmotic swelling and reduced the change in cell volume and the time to peak [Ca(2+)](i) in response to hyper-osmotic stress, but did not affect the peak magnitudes of [Ca(2+)](i) in those cells that did respond. Co-treatment with IL-1Ra, thapsigargin, or toxin B restored these responses to control levels. The effects were associated with alterations in F-actin organization.<br />Conclusions: IL-1 alters the normal volumetric and Ca(2+) signaling response of chondrocytes to osmotic stress through mechanisms involving F-actin remodeling via small Rho GTPases. These findings provide further insights into the mechanisms by which IL-1 may interfere with normal physiologic processes in the chondrocyte, such as the adaptation or regulatory responses to mechanical or osmotic loading.

Details

Language :
English
ISSN :
1522-9653
Volume :
16
Issue :
12
Database :
MEDLINE
Journal :
Osteoarthritis and cartilage
Publication Type :
Academic Journal
Accession number :
18495501
Full Text :
https://doi.org/10.1016/j.joca.2008.04.003