Back to Search Start Over

Colocalization of neurokinin-1, N-methyl-D-aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii.

Authors :
Lin LH
Taktakishvili OM
Talman WT
Source :
Neuroscience [Neuroscience] 2008 Jun 23; Vol. 154 (2), pp. 690-700. Date of Electronic Publication: 2008 Apr 08.
Publication Year :
2008

Abstract

Substance P (SP) and glutamate are implicated in cardiovascular regulation by the nucleus tractus solitarii (NTS). Our earlier studies suggest that SP, which acts at neurokinin 1 (NK1) receptors, is not a baroreflex transmitter while glutamate is. On the other hand, our recent studies showed that loss of NTS neurons expressing NK1 receptors leads to loss of baroreflex responses and increased blood pressure lability. Furthermore, studies have suggested that SP may interact with glutamate in the NTS. In this study, we sought to test the hypothesis that NK1 receptors colocalize with glutamate receptors, either N-methyl-d-aspartate (NMDA) receptors or AMPA receptors or both in the NTS. We performed double-label immunofluorescent staining for NK1 receptors and either N-methyl-d-aspartate receptor subunit 1 (NMDAR1) or AMPA specific glutamate receptor subunit 2 (GluR2) in the rat NTS. Because vesicular glutamate transporter 2 (VGLUT2) containing fibers are prominent in portions of the NTS where cardiovascular afferent fibers terminate, we also performed double-label immunofluorescent staining for NK1 receptors and VGLUT2. Confocal microscopic images showed that NK1 receptors-immunoreactivity (IR) and NMDAR1-IR colocalized in the same neurons in many NTS subnuclei. Almost all NTS neurons positive for NK1 receptor-IR also contained NMDAR1-IR, but only 53.4% to 74.8% of NMDAR1-IR positive neurons contained NK1 receptors-IR. NK1 receptor-IR and GluR2-IR also colocalized in many neurons in NTS subnuclei. A majority of NK1 receptor-IR positive NTS neurons also contained GluR2-IR, but only 45.8% to 73.9% of GluR2-IR positive NTS neurons contained NK1 receptors-IR. Our results also showed that fibers labeled for VGLUT2-IR were in close apposition to fibers and neurons labeled for NK1 receptor-IR. The data support our hypothesis, provide an anatomical framework for glutamate and SP interactions, and may explain the loss of baroreflexes when NTS neurons, which could respond to glutamate as well as SP, are killed.

Details

Language :
English
ISSN :
0306-4522
Volume :
154
Issue :
2
Database :
MEDLINE
Journal :
Neuroscience
Publication Type :
Academic Journal
Accession number :
18479828
Full Text :
https://doi.org/10.1016/j.neuroscience.2008.03.078