Back to Search Start Over

FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability.

Authors :
Wu Y
Shin-ya K
Brosh RM Jr
Source :
Molecular and cellular biology [Mol Cell Biol] 2008 Jun; Vol. 28 (12), pp. 4116-28. Date of Electronic Publication: 2008 Apr 21.
Publication Year :
2008

Abstract

FANCJ mutations are associated with breast cancer and genetically linked to the bone marrow disease Fanconi anemia (FA). The genomic instability of FA-J mutant cells suggests that FANCJ helicase functions in the replicational stress response. A putative helicase with sequence similarity to FANCJ in Caenorhabditis elegans (DOG-1) and mouse (RTEL) is required for poly(G) tract maintenance, suggesting its involvement in the resolution of alternate DNA structures that impede replication. Under physiological conditions, guanine-rich sequences spontaneously assemble into four-stranded structures (G quadruplexes [G4]) that influence genomic stability. FANCJ unwound G4 DNA substrates in an ATPase-dependent manner. FANCJ G4 unwinding is specific since another superfamily 2 helicase, RECQ1, failed to unwind all G4 substrates tested under conditions in which the helicase unwound duplex DNA. Replication protein A stimulated FANCJ G4 unwinding, whereas the mismatch repair complex MSH2/MSH6 inhibited this activity. FANCJ-depleted cells treated with the G4-interactive compound telomestatin displayed impaired proliferation and elevated levels of apoptosis and DNA damage compared to small interfering RNA control cells, suggesting that G4 DNA is a physiological substrate of FANCJ. Although the FA pathway has been classically described in terms of interstrand cross-link (ICL) repair, the cellular defects associated with FANCJ mutation extend beyond the reduced ability to repair ICLs and involve other types of DNA structural roadblocks to replication.

Details

Language :
English
ISSN :
1098-5549
Volume :
28
Issue :
12
Database :
MEDLINE
Journal :
Molecular and cellular biology
Publication Type :
Academic Journal
Accession number :
18426915
Full Text :
https://doi.org/10.1128/MCB.02210-07