Back to Search
Start Over
Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors.
- Source :
-
Biophysical journal [Biophys J] 2008 Jul; Vol. 95 (2), pp. 986-93. Date of Electronic Publication: 2008 Mar 28. - Publication Year :
- 2008
-
Abstract
- The innate immune systems of humans and other animals are activated by lipopolysaccharides (LPS), which are glucosamine-based phospholipids that form the outer leaflet of the outer membranes of Gram-negative bacteria. Activation involves interactions of LPS with the innate immunity-receptor comprised of toll-like receptor 4 in complex with so-called MD-2 protein and accessory proteins, such as CD14 and LPS binding protein. The Lipid Metabolites and Pathways Strategy (LIPID MAPS) Consortium has isolated in large amounts a nearly homogeneous LPS, Kdo(2)-Lipid A, and demonstrated that it activates macrophages via toll-like receptor 4. The active form of LPS, monomer or aggregate, is controversial. We have therefore examined the aggregation behavior and other physical properties of Kdo(2)-Lipid A. Differential scanning calorimetry of Kdo(2)-Lipid A suspensions revealed a gel-to-liquid crystalline phase transition at 36.4 degrees C (T(m)). The nominal critical aggregation concentration, determined by dynamic light scattering, was found to be 41.2 +/- 1.6 nM below the T(m) (25 degrees C), but only 8.1 +/- 0.3 nM above the T(m) (37 degrees C). The specific molecular volume of Kdo(2)-Lipid A, obtained by densitometry measurements was found to be 3159 +/- 71 A(3) at 25 degrees C, from which the number of molecules in each aggregate was estimated to be 5.8 x 10(5). The aggregation behavior of Kdo(2)-Lipid A in the presence of lipoprotein-deficient serum suggests that Re LPS monomers and multimers are the active units for the immune system in the CD14-dependent and -independent pathways, respectively.
Details
- Language :
- English
- ISSN :
- 1542-0086
- Volume :
- 95
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Biophysical journal
- Publication Type :
- Academic Journal
- Accession number :
- 18375521
- Full Text :
- https://doi.org/10.1529/biophysj.108.129197