Back to Search Start Over

Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells.

Authors :
Smith KA
Chocron S
von der Hardt S
de Pater E
Soufan A
Bussmann J
Schulte-Merker S
Hammerschmidt M
Bakkers J
Source :
Developmental cell [Dev Cell] 2008 Feb; Vol. 14 (2), pp. 287-97.
Publication Year :
2008

Abstract

We have used high-resolution 4D imaging of cardiac progenitor cells (CPCs) in zebrafish to investigate the earliest left-right asymmetric movements during cardiac morphogenesis. Differential migratory behavior within the heart field was observed, resulting in a rotation of the heart tube. The leftward displacement and rotation of the tube requires hyaluronan synthase 2 expression within the CPCs. Furthermore, by reducing or ectopically activating BMP signaling or by implantation of BMP beads we could demonstrate that BMP signaling, which is asymmetrically activated in the lateral plate mesoderm and regulated by early left-right signals, is required to direct CPC migration and cardiac rotation. Together, these results support a model in which CPCs migrate toward a BMP source during development of the linear heart tube, providing a mechanism by which the left-right axis drives asymmetric development of the vertebrate heart.

Details

Language :
English
ISSN :
1534-5807
Volume :
14
Issue :
2
Database :
MEDLINE
Journal :
Developmental cell
Publication Type :
Academic Journal
Accession number :
18267096
Full Text :
https://doi.org/10.1016/j.devcel.2007.11.015