Back to Search Start Over

Quantification of urinary aflatoxin B1 dialdehyde metabolites formed by aflatoxin aldehyde reductase using isotope dilution tandem mass spectrometry.

Authors :
Johnson DN
Egner PA
Obrian G
Glassbrook N
Roebuck BD
Sutter TR
Payne GA
Kensler TW
Groopman JD
Source :
Chemical research in toxicology [Chem Res Toxicol] 2008 Mar; Vol. 21 (3), pp. 752-60. Date of Electronic Publication: 2008 Feb 12.
Publication Year :
2008

Abstract

The aflatoxin B 1 aldehyde reductases (AFARs), inducible members of the aldo-keto reductase superfamily, convert aflatoxin B 1 dialdehyde derived from the exo- and endo-8,9-epoxides into a number of reduced alcohol products that might be less capable of forming covalent adducts with proteins. An isotope dilution tandem mass spectrometry method for quantification of the metabolites, C-8 monoalcohol, dialcohol, and C-6a monoalcohol, was developed to ascertain their possible role as urinary biomarkers for application to chemoprevention investigations. This method uses a novel (13)C 17-aflatoxin B 1 dialcohol internal standard, synthesized from (13)C 17-aflatoxin B 1 biologically produced by Aspergillus flavus. Chromatographic standards of the alcohols were generated through sodium borohydride reduction of the aflatoxin B 1 dialdehyde. This method was then explored for sensitivity and specificity in urine samples of aflatoxin B 1-dosed rats that were pretreated with 3 H-1,2-dithiole-3-thione to induce the expression of AKR7A1, a rat isoform of AFAR. One of the two known monoalcohols and the dialcohol metabolite were detected in all urine samples. The concentrations were 203.5 +/- 39.0 ng of monoalcohol C-6a/mg of urinary creatinine and 10.0 +/- 1.0 ng of dialcohol/mg of creatinine (mean +/- standard error). These levels represented about 8.0 and 0.4% of the administered aflatoxin B 1 dose that was found in the urine at 24 h, respectively. Thus, this highly sensitive and specific isotope dilution method is applicable to in vivo quantification of urinary alcohol products produced by AFAR. Heretofore, the metabolic fate of the 8,9-epoxides that are critical for aflatoxin toxicities has been measured by biomarkers of lysine-albumin adducts, hepatic and urinary DNA adducts, and urinary mercapturic acids. This urinary detection of the alcohol products directly contributes to the goal of mass balancing the fate of the bioreactive 8,9-epoxides of AFB 1 in vivo.

Details

Language :
English
ISSN :
0893-228X
Volume :
21
Issue :
3
Database :
MEDLINE
Journal :
Chemical research in toxicology
Publication Type :
Academic Journal
Accession number :
18266327
Full Text :
https://doi.org/10.1021/tx700397n