Back to Search Start Over

GSK-3-specific inhibitor-supplemented hESC medium prevents the epithelial-mesenchymal transition process and the up-regulation of matrix metalloproteinases in hESCs cultured in feeder-free conditions.

Authors :
Ullmann U
Gilles C
De Rycke M
Van de Velde H
Sermon K
Liebaers I
Source :
Molecular human reproduction [Mol Hum Reprod] 2008 Mar; Vol. 14 (3), pp. 169-79. Date of Electronic Publication: 2008 Feb 07.
Publication Year :
2008

Abstract

Feeder-free culture induces spontaneous differentiation of human embryonic stem cells (hESCs), identified as an epithelial to mesenchymal transition (EMT). The maintenance of pluripotency of hESCs in feeder-free cultures through the activation of the WNT pathway using a glycogen synthase kinase (GSK)-3-specific inhibitor (BIO) was reported. The aim of this study was to determine the effect of BIO on the EMT process. In contrast with those grown in feeder-free conditions with control medium, hESC colonies cultured with BIO-supplemented hESC medium did not show any fibroblast-like cells at the periphery. Transmission electron microscopy, relative quantitative real-time RT-PCR and immunostaining analyses showed the presence of epithelial features and a diminution of mesenchymal features in the BIO-treated hESCs such as a strong E-cadherin expression, the down-regulation of Vimentin, Snail and Slug expressions and a cytoplasmic beta-catenin expression. An up-regulation of matrix metalloproteinases (MMP) MMP-2, MMP-9, MT-1MMP (membrane-type 1 MMP) and EMMPRIN (extracellular MMP inducer) expression was also found associated with the EMT occurring in feeder-free hESCs cultures using mouse embryonic fibroblasts conditioned medium (MEF CM). The presence of BIO clearly down-regulated the expression of these MMPs. This study showed that BIO, a GSK-3-specific inhibitor, prevents the EMT process which is associated with the feeder-free hESC culture. Nevertheless, BIO was not sufficient to expand hESCs in a long-term culture system.

Details

Language :
English
ISSN :
1460-2407
Volume :
14
Issue :
3
Database :
MEDLINE
Journal :
Molecular human reproduction
Publication Type :
Academic Journal
Accession number :
18263607
Full Text :
https://doi.org/10.1093/molehr/gan001