Back to Search
Start Over
Constructing hysteretic memory in neural networks.
- Source :
-
IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society [IEEE Trans Syst Man Cybern B Cybern] 2000; Vol. 30 (4), pp. 601-9. - Publication Year :
- 2000
-
Abstract
- Hysteresis is a unique type of dynamic, which contains an important property, rate-independent memory. In addition to other memory-related studies such as time delay neural networks, recurrent networks, and reinforcement learning, rate-independent memory deserves further attention owing to its potential applications. In this paper, we attempt to define hysteretic memory (rate independent memory) and examine whether or not it could be modeled in neural networks. Our analysis results demonstrate that other memory-related mechanisms are not hysteresis systems. A novel neural cell, referred to herein as the propulsive neural unit, is then proposed. The proposed cell is based on a notion related the submemory pool, which accumulates the stimulus and ultimately assists neural networks to achieve model hysteresis. In addition to training by backpropagation, a combination of such cells can simulate given hysteresis trajectories.
Details
- Language :
- English
- ISSN :
- 1083-4419
- Volume :
- 30
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
- Publication Type :
- Academic Journal
- Accession number :
- 18252392
- Full Text :
- https://doi.org/10.1109/3477.865179