Back to Search
Start Over
Influence of saccadic eye movements on geniculostriate excitability in normal monkeys.
- Source :
-
Experimental brain research [Exp Brain Res] 1976 Jul 28; Vol. 25, pp. 487-509. - Publication Year :
- 1976
-
Abstract
- Using permanently implanted electrodes in squirrel monkeys and macaques, transmission through the lateral geniculate nucleus (LGN) was assayed from the amplitude of potentials evoked in optic radiation by and electrical pulse applied to optic tract. Averaging of either individually or machine selected potentials, elicited at 0.3, 1.0, 20 or 50 HZ, in all cases showed a decrease in transmission ranging from 5-60% in the period after saccadic eye movements made ad libitum. The suppression was greater in a patterned visual environment than in diffuse illumination, which in turn was greater than that occurring following saccades in the dark. Demonstration of the effect in darkness always required data averaging and never exceeded 20%. The effect was consistently greater in the magnocellular than parvocellular component. Suppresion was often abruptly terminated and replaced by a facilitation of 5-15% about 100 msec after saccade detection. Comparable effects were observed for excitability of striate cortex tested by a stimulus pulse applied to optic radiation. In addition, sharply demarcated potentials inherently arising in LGN and striate cortex were found in association with saccades made even in total darkness. Neglecting a possible but dubious contribution from eye muscle proprioceptors, the experiments establish the existence of a centrally originating modulation of visual processing at both LGN and striate cortex in ralation to saccadic eye movement in primates. This modulation may partially underlie the phenomenon of "saccadic suppression" and hasten the acquistion of a meaningful visualsample immediately following an ocular saccade. It remains uncertain as to how it may relate to similar or greater effects accompanying changes in alertness, or to fluctuations of unknown origin occurring sometimes semirhythmically at 0.05-0.03 HZ (Fig 7).
- Subjects :
- Animals
Emotions physiology
Evoked Potentials
Haplorhini
Light
Macaca
Neural Inhibition
Optic Nerve physiology
Pattern Recognition, Visual physiology
Reaction Time
Saimiri
Synaptic Transmission
Visual Cortex physiology
Corpus Striatum physiology
Eye Movements
Geniculate Bodies physiology
Saccades
Visual Pathways physiology
Visual Perception physiology
Subjects
Details
- Language :
- English
- ISSN :
- 0014-4819
- Volume :
- 25
- Database :
- MEDLINE
- Journal :
- Experimental brain research
- Publication Type :
- Academic Journal
- Accession number :
- 182515
- Full Text :
- https://doi.org/10.1007/BF00239783