Back to Search Start Over

Lithium delays progression of amyotrophic lateral sclerosis.

Authors :
Fornai F
Longone P
Cafaro L
Kastsiuchenka O
Ferrucci M
Manca ML
Lazzeri G
Spalloni A
Bellio N
Lenzi P
Modugno N
Siciliano G
Isidoro C
Murri L
Ruggieri S
Paparelli A
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2008 Feb 12; Vol. 105 (6), pp. 2052-7. Date of Electronic Publication: 2008 Feb 04.
Publication Year :
2008

Abstract

ALS is a devastating neurodegenerative disorder with no effective treatment. In the present study, we found that daily doses of lithium, leading to plasma levels ranging from 0.4 to 0.8 mEq/liter, delay disease progression in human patients affected by ALS. None of the patients treated with lithium died during the 15 months of the follow-up, and disease progression was markedly attenuated when compared with age-, disease duration-, and sex-matched control patients treated with riluzole for the same amount of time. In a parallel study on a genetic ALS animal model, the G93A mouse, we found a marked neuroprotection by lithium, which delayed disease onset and duration and augmented the life span. These effects were concomitant with activation of autophagy and an increase in the number of the mitochondria in motor neurons and suppressed reactive astrogliosis. Again, lithium reduced the slow necrosis characterized by mitochondrial vacuolization and increased the number of neurons counted in lamina VII that were severely affected in saline-treated G93A mice. After lithium administration in G93A mice, the number of these neurons was higher even when compared with saline-treated WT. All these mechanisms may contribute to the effects of lithium, and these results offer a promising perspective for the treatment of human patients affected by ALS.

Details

Language :
English
ISSN :
1091-6490
Volume :
105
Issue :
6
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
18250315
Full Text :
https://doi.org/10.1073/pnas.0708022105