Back to Search Start Over

Cramér-Rao bounds for parametric shape estimation in inverse problems.

Authors :
Ye JC
Bresler Y
Moulin P
Source :
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society [IEEE Trans Image Process] 2003; Vol. 12 (1), pp. 71-84.
Publication Year :
2003

Abstract

We address the problem of computing fundamental performance bounds for estimation of object boundaries from noisy measurements in inverse problems, when the boundaries are parameterized by a finite number of unknown variables. Our model applies to multiple unknown objects, each with its own unknown gray level, or color, and boundary parameterization, on an arbitrary known background. While such fundamental bounds on the performance of shape estimation algorithms can in principle be derived from the Cramér-Rao lower bounds, very few results have been reported due to the difficulty of computing the derivatives of a functional with respect to shape deformation. We provide a general formula for computing Cramér-Rao lower bounds in inverse problems where the observations are related to the object by a general linear transform, followed by a possibly nonlinear and noisy measurement system. As an illustration, we derive explicit formulas for computed tomography, Fourier imaging, and deconvolution problems. The bounds reveal that highly accurate parametric reconstructions are possible in these examples, using severely limited and noisy data.

Details

Language :
English
ISSN :
1057-7149
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Publication Type :
Academic Journal
Accession number :
18237880
Full Text :
https://doi.org/10.1109/TIP.2002.806249