Back to Search
Start Over
Numerical study on schramm-loewner evolution in nonminimal conformal field theories.
- Source :
-
Physical review letters [Phys Rev Lett] 2008 Jan 11; Vol. 100 (1), pp. 015704. Date of Electronic Publication: 2008 Jan 11. - Publication Year :
- 2008
-
Abstract
- The Schramm-Loewner evolution (SLE) is a powerful tool to describe fractal interfaces in 2D critical statistical systems, yet the application of SLE is well established for statistical systems described by quantum field theories satisfying only conformal invariance, the so-called minimal conformal field theories (CFTs). We consider interfaces in Z(N) spin models at their self-dual critical point for N = 4 and N = 5. These lattice models are described in the continuum limit by nonminimal CFTs where the role of a ZN symmetry, in addition to the conformal one, should be taken into account. We provide numerical results on the fractal dimension of the interfaces which are SLE candidates for nonminimal CFTs. Our results are in excellent agreement with some recent theoretical predictions.
Details
- Language :
- English
- ISSN :
- 0031-9007
- Volume :
- 100
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Physical review letters
- Publication Type :
- Academic Journal
- Accession number :
- 18232786
- Full Text :
- https://doi.org/10.1103/PhysRevLett.100.015704