Back to Search Start Over

The loss of ions from Venus through the plasma wake.

Authors :
Barabash S
Fedorov A
Sauvaud JJ
Lundin R
Russell CT
Futaana Y
Zhang TL
Andersson H
Brinkfeldt K
Grigoriev A
Holmström M
Yamauchi M
Asamura K
Baumjohann W
Lammer H
Coates AJ
Kataria DO
Linder DR
Curtis CC
Hsieh KC
Sandel BR
Grande M
Gunell H
Koskinen HE
Kallio E
Riihelä P
Säles T
Schmidt W
Kozyra J
Krupp N
Fränz M
Woch J
Luhmann J
McKenna-Lawlor S
Mazelle C
Thocaven JJ
Orsini S
Cerulli-Irelli R
Mura M
Milillo M
Maggi M
Roelof E
Brandt P
Szego K
Winningham JD
Frahm RA
Scherrer J
Sharber JR
Wurz P
Bochsler P
Source :
Nature [Nature] 2007 Nov 29; Vol. 450 (7170), pp. 650-3.
Publication Year :
2007

Abstract

Venus, unlike Earth, is an extremely dry planet although both began with similar masses, distances from the Sun, and presumably water inventories. The high deuterium-to-hydrogen ratio in the venusian atmosphere relative to Earth's also indicates that the atmosphere has undergone significantly different evolution over the age of the Solar System. Present-day thermal escape is low for all atmospheric species. However, hydrogen can escape by means of collisions with hot atoms from ionospheric photochemistry, and although the bulk of O and O2 are gravitationally bound, heavy ions have been observed to escape through interaction with the solar wind. Nevertheless, their relative rates of escape, spatial distribution, and composition could not be determined from these previous measurements. Here we report Venus Express measurements showing that the dominant escaping ions are O+, He+ and H+. The escaping ions leave Venus through the plasma sheet (a central portion of the plasma wake) and in a boundary layer of the induced magnetosphere. The escape rate ratios are Q(H+)/Q(O+) = 1.9; Q(He+)/Q(O+) = 0.07. The first of these implies that the escape of H+ and O+, together with the estimated escape of neutral hydrogen and oxygen, currently takes place near the stoichometric ratio corresponding to water.

Details

Language :
English
ISSN :
1476-4687
Volume :
450
Issue :
7170
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
18046398
Full Text :
https://doi.org/10.1038/nature06434