Back to Search Start Over

Symmetry, shape, and order.

Authors :
Trovato A
Hoang TX
Banavar JR
Maritan A
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2007 Dec 04; Vol. 104 (49), pp. 19187-92. Date of Electronic Publication: 2007 Nov 21.
Publication Year :
2007

Abstract

Packing problems have been of great interest in many diverse contexts for many centuries. The optimal packing of identical objects has been often invoked to understand the nature of low-temperature phases of matter. In celebrated work, Kepler conjectured that the densest packing of spheres is realized by stacking variants of the face-centered-cubic lattice and has a packing fraction of pi /(3\square root2)\approximately 0.7405. Much more recently, an unusually high-density packing of approximately 0.770732 was achieved for congruent ellipsoids. Such studies are relevant for understanding the structure of crystals, glasses, the storage and jamming of granular materials, ceramics, and the assembly of viral capsid structures. Here, we carry out analytical studies of the stacking of close-packed planar layers of systems made up of truncated cones possessing uniaxial symmetry. We present examples of high-density packing whose order is characterized by a broken symmetry arising from the shape of the constituent objects. We find a biaxial arrangement of solid cones with a packing fraction of pi/4. For truncated cones, there are two distinct regimes, characterized by different packing arrangements, depending on the ratio c of the base radii of the truncated cones with a transition at c*=\square root2-1.

Details

Language :
English
ISSN :
1091-6490
Volume :
104
Issue :
49
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
18032605
Full Text :
https://doi.org/10.1073/pnas.0707523104