Back to Search
Start Over
Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure.
- Source :
-
The Plant cell [Plant Cell] 2007 Nov; Vol. 19 (11), pp. 3669-91. Date of Electronic Publication: 2007 Nov 16. - Publication Year :
- 2007
-
Abstract
- Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula x Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.
- Subjects :
- Carbohydrates
Cell Wall ultrastructure
Chromatography, High Pressure Liquid
Fluorescence
Gene Expression Profiling
Gene Expression Regulation, Plant
Immunohistochemistry
Phenols analysis
Phenotype
Plants, Genetically Modified
Populus cytology
Populus ultrastructure
Solubility
Spectroscopy, Fourier Transform Infrared
Xylem cytology
Xylem growth & development
Xylem ultrastructure
Aldehyde Oxidoreductases genetics
Cell Wall chemistry
Down-Regulation genetics
Lignin chemistry
Lignin metabolism
Populus enzymology
Populus genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1040-4651
- Volume :
- 19
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- The Plant cell
- Publication Type :
- Academic Journal
- Accession number :
- 18024569
- Full Text :
- https://doi.org/10.1105/tpc.107.054148