Back to Search Start Over

Seizure recognition on epilepsy feature tensor.

Authors :
Acar E
Bingol CA
Bingol H
Bro R
Yener B
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2007; Vol. 2007, pp. 4273-6.
Publication Year :
2007

Abstract

With a goal of automating visual analysis of electroencephalogram (EEG) data and assessing the performance of various features in seizure recognition, we introduce a mathematical model capable of recognizing patient-specific epileptic seizures with high accuracy. We represent multi-channel scalp EEG using a set of features. These features expected to have distinct trends during seizure and non-seizure periods include features from both time and frequency domains. The contributions of this paper are threefold. First, we rearrange multi-channel EEG signals as a third-order tensor called an Epilepsy Feature Tensor with modes: time epochs, features and electrodes. Second, we model the Epilepsy Feature Tensor using a multilinear regression model, i.e., Multilinear Partial Least Squares regression, which is the generalization of Partial Least Squares (PLS) regression to higher-order datasets. This two-step approach facilitates EEG data analysis from multiple electrodes represented by several features from different domains. Third, we identify which features are more significant for seizure recognition. Our results based on the analysis of 19 seizures from 5 epileptic patients demonstrate that multiway analysis of an Epilepsy Feature Tensor can detect (patient-specific) seizures with classification accuracy ranging between 77-96%.

Details

Language :
English
ISSN :
2375-7477
Volume :
2007
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
18002946
Full Text :
https://doi.org/10.1109/IEMBS.2007.4353280