Back to Search
Start Over
Generalized linear mixed models: a review and some extensions.
- Source :
-
Lifetime data analysis [Lifetime Data Anal] 2007 Dec; Vol. 13 (4), pp. 497-512. Date of Electronic Publication: 2007 Nov 14. - Publication Year :
- 2007
-
Abstract
- Breslow and Clayton (J Am Stat Assoc 88:9-25,1993) was, and still is, a highly influential paper mobilizing the use of generalized linear mixed models in epidemiology and a wide variety of fields. An important aspect is the feasibility in implementation through the ready availability of related software in SAS (SAS Institute, PROC GLIMMIX, SAS Institute Inc., URL http://www.sas.com , 2007), S-plus (Insightful Corporation, S-PLUS 8, Insightful Corporation, Seattle, WA, URL http://www.insightful.com , 2007), and R (R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org , 2006) for example, facilitating its broad usage. This paper reviews background to generalized linear mixed models and the inferential techniques which have been developed for them. To provide the reader with a flavor of the utility and wide applicability of this fundamental methodology we consider a few extensions including additive models, models for zero-heavy data, and models accommodating latent clusters.
- Subjects :
- Epidemiologic Methods
Humans
Longitudinal Studies
Software
Linear Models
Subjects
Details
- Language :
- English
- ISSN :
- 1380-7870
- Volume :
- 13
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Lifetime data analysis
- Publication Type :
- Academic Journal
- Accession number :
- 18000755
- Full Text :
- https://doi.org/10.1007/s10985-007-9065-x