Back to Search Start Over

Mechanism of nicotinic acid transport in human liver cells: experiments with HepG2 cells and primary hepatocytes.

Authors :
Said HM
Nabokina SM
Balamurugan K
Mohammed ZM
Urbina C
Kashyap ML
Source :
American journal of physiology. Cell physiology [Am J Physiol Cell Physiol] 2007 Dec; Vol. 293 (6), pp. C1773-8. Date of Electronic Publication: 2007 Oct 10.
Publication Year :
2007

Abstract

This study reports on the functional expression of a specific, high-affinity carrier-mediated mechanism for the transport of niacin (nicotinic acid) in human liver cells. Both human-derived liver HepG2 cells and human primary hepatocytes were used as models in these investigations. The initial rate of transport of nicotinic acid into HepG2 cells was found to be acidic pH, temperature, and energy dependent; it was, however, Na(+) independent in nature. Evidence for the existence of a carrier-mediated system that is specific for [(3)H]nicotinic acid transport was found and included the following: 1) saturability as a function of concentration with an apparent K(m) of 0.73 +/- 0.16 microM and V(max) of 25.02 +/- 1.45 pmol.mg protein(-1).3 min(-1), 2) cis-inhibition by unlabeled nicotinic acid and nicotinamide but not by unrelated organic anions (lactate, acetate, butyrate, succinate, citrate, and valproate), and 3) trans-stimulation of [(3)H]nicotinic acid efflux by unlabeled nicotinic acid. Transport of the vitamin into human primary hepatocytes occurs similarly via an acidic pH-dependent and specific carrier-mediated process. Inhibitors of the Ca(2+)-calmodulin-mediated pathway (but not modulators of the PKC-, PKA-, and protein tyrosine kinase-mediated pathways) inhibited nicotinic acid transport into both HepG2 cells and human primary hepatocytes. Maintenance of HepG2 cells (for 48 h) in growth medium oversupplemented with nicotinic acid (or nicotinamide) did not affect the subsequent transport of [(3)H]nicotinic acid into HepG2 cells. These results show, for the first time, the existence of a specific and regulated membrane carrier-mediated system for nicotinic acid transport in human liver cells.

Details

Language :
English
ISSN :
0363-6143
Volume :
293
Issue :
6
Database :
MEDLINE
Journal :
American journal of physiology. Cell physiology
Publication Type :
Academic Journal
Accession number :
17928533
Full Text :
https://doi.org/10.1152/ajpcell.00409.2007