Back to Search Start Over

Design, synthesis, and metal binding of novel Pseudo- oligopeptides containing two phosphinic acid groups.

Authors :
Ye Y
Liu M
Kao JL
Marshall GR
Source :
Biopolymers [Biopolymers] 2008 Jan; Vol. 89 (1), pp. 72-85.
Publication Year :
2008

Abstract

Phosphinic compounds have potential as amide-bond mimetics in the development of novel peptidomimetics, enzyme inhibitors, and metal-binding ligands. Novel pseudo-oligopeptides with two phosphinic acid groups embedded in the peptide backbone serving as amide-bond surrogates, Psi[P(O,OH)--CH(2)], were targeted. A series of linear and cyclic pseudo-oligopeptides with two phosphinic acid groups arrayed at different positions in the peptide sequence were designed, including Ac--Phe--{(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly}(2)--NH(2) (P2), Ac--NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--NH(2) (P3), Ac--NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--Phe--(R,S) --AlaPsi[P(O,OH)--CH(2)]Gly--NH(2) (P4), cyclo{NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe}(2) (P5), and cyclo[NH--(R,S)--AlaPsi[P(O,OH)--CH(2)]Gly--Phe--Phe](2) (P6). They were synthesized via conventional Fmoc chemistry on solid support utilizing Fmoc-protected phosphinic acid-containing pseudo-dipeptide fragment, i.e. Fmoc--(R,S)--AlaPsi[P(O,OCH(3))--CH(2)]Gly--OH. The pseudo-peptides containing two phosphinic acid groups exhibited the highest binding affinity and selectivity for Fe(III) among the 10-metal ions screened by ESI-MS analysis--Cu(II), Zn(II), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), Al(III), Ga(III), and Gd(III). P4 and P6 with 11-atom linkages between the two phosphinic acids preferred intramolecular metal binding to form 1:1 ligand/metal complexes. As revealed by competition experiments, P4 showed the highest relative binding affinity among the six compounds tested. Noteworthy, P4 also showed higher relative binding affinity than similar dihydroxamate-containing pseudo-peptides reported previously. The novel structural prototype and facile synthesis along with selective and potent Fe(III) binding strongly suggest that pseudo-peptides containing the two or more phosphinic groups as amide-bond surrogates deserve further exploration in medicinal chemistry.

Details

Language :
English
ISSN :
0006-3525
Volume :
89
Issue :
1
Database :
MEDLINE
Journal :
Biopolymers
Publication Type :
Academic Journal
Accession number :
17910046
Full Text :
https://doi.org/10.1002/bip.20855