Back to Search Start Over

The role of PGR5 in the redox poising of photosynthetic electron transport.

Authors :
Nandha B
Finazzi G
Joliot P
Hald S
Johnson GN
Source :
Biochimica et biophysica acta [Biochim Biophys Acta] 2007 Oct; Vol. 1767 (10), pp. 1252-9. Date of Electronic Publication: 2007 Aug 03.
Publication Year :
2007

Abstract

The pgr5 mutant of Arabidopsis thaliana has been described as being deficient in cyclic electron flow around photosystem I, however, the precise role of the PGR5 protein remains unknown. To address this issue, photosynthetic electron transport was examined in intact leaves of pgr5 and wild type A. thaliana. Based on measurements of the kinetics of P700 oxidation in far red light and re-reduction following oxidation in the presence of DCMU, we conclude that this mutant is able to perform cyclic electron flow at a rate similar to the wild type. The PGR5 protein is therefore not essential for cyclic flow. However, cyclic flow is affected by the pgr5 mutation under conditions where this process is normally enhanced in wild type leaves, i.e. high light or low CO(2) concentrations resulted in enhancement of cyclic electron flow. This suggests a different capacity to regulate cyclic flow in response to environmental stimuli in the mutant. We also show that the pgr5 mutant is affected in the redox poising of the chloroplast, with the electron transport chain being substantially reduced under most conditions. This may result in defective feedback regulation of photosynthetic electron transport under some conditions, thus providing a rationale for the reduced efficiency of cyclic electron flow.

Details

Language :
English
ISSN :
0006-3002
Volume :
1767
Issue :
10
Database :
MEDLINE
Journal :
Biochimica et biophysica acta
Publication Type :
Academic Journal
Accession number :
17803955
Full Text :
https://doi.org/10.1016/j.bbabio.2007.07.007