Back to Search Start Over

Suspended heated silicon platform for rapid thermal control of surface reactions with application to carbon nanotube synthesis.

Authors :
van Laake L
Hart AJ
Slocum AH
Source :
The Review of scientific instruments [Rev Sci Instrum] 2007 Aug; Vol. 78 (8), pp. 083901.
Publication Year :
2007

Abstract

Rapid continuous thermal control of chemical reactions such as those for chemical vapor deposition (CVD) growth of nanotubes and nanowires cannot be studied using traditional reactors such as tube furnaces, which have large thermal masses. We present the design, modeling, and verification of a simple, low-cost reactor based on resistive heating of a suspended silicon platform. This system achieves slew rates exceeding 100 degrees C/s, enabling studies of rapid heating and thermal cycling. Moreover, the reaction surface is available for optical monitoring. A first-generation CVD apparatus encapsulates the heated silicon platform inside a sealed quartz tube, and initial experiments demonstrate growth of films of tangled single-wall and aligned multiwall carbon nanotubes using this system. The reactor can be straightforwardly scaled to larger or smaller substrate sizes and may be extended for a wide variety of reactions, for performing in situ reaction diagnostics, for chip-scale growth of nanostructures, and for rapid thermal processing of microelectronic and micromechanical devices.

Details

Language :
English
ISSN :
0034-6748
Volume :
78
Issue :
8
Database :
MEDLINE
Journal :
The Review of scientific instruments
Publication Type :
Academic Journal
Accession number :
17764329
Full Text :
https://doi.org/10.1063/1.2760936