Back to Search Start Over

Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex.

Authors :
Zeng LH
Ouyang Y
Gazit V
Cirrito JR
Jansen LA
Ess KC
Yamada KA
Wozniak DF
Holtzman DM
Gutmann DH
Wong M
Source :
Neurobiology of disease [Neurobiol Dis] 2007 Nov; Vol. 28 (2), pp. 184-96. Date of Electronic Publication: 2007 Jul 21.
Publication Year :
2007

Abstract

Mice with inactivation of the Tuberous sclerosis complex-1 (Tsc1) gene in glia (Tsc1 GFAP CKO mice) have deficient astrocyte glutamate transporters and develop seizures, suggesting that abnormal glutamate homeostasis contributes to neurological abnormalities in these mice. We examined the hypothesis that Tsc1 GFAP CKO mice have elevated extracellular brain glutamate levels that may cause neuronal death, abnormal glutamatergic synaptic function, and associated impairments in behavioral learning. In vivo microdialysis documented elevated glutamate levels in hippocampi of Tsc1 GFAP CKO mice and several cell death assays demonstrated neuronal death in hippocampus and neocortex. Impairment of long-term potentiation (LTP) with tetanic stimulation was observed in hippocampal slices from Tsc1 GFAP CKO mice and was reversed by low concentrations of NMDA antagonist, indicating that excessive synaptic glutamate directly inhibited LTP. Finally, Tsc1 GFAP CKO mice exhibited deficits in two hippocampal-dependent learning paradigms. These results suggest that abnormal glutamate homeostasis predisposes to excitotoxic cell death, impaired synaptic plasticity and learning deficits in Tsc1 GFAP CKO mice.

Details

Language :
English
ISSN :
0969-9961
Volume :
28
Issue :
2
Database :
MEDLINE
Journal :
Neurobiology of disease
Publication Type :
Academic Journal
Accession number :
17714952
Full Text :
https://doi.org/10.1016/j.nbd.2007.07.015