Back to Search
Start Over
Arsenate tolerance in Silene paradoxa does not rely on phytochelatin-dependent sequestration.
- Source :
-
Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2008 Apr; Vol. 152 (3), pp. 585-91. Date of Electronic Publication: 2007 Aug 16. - Publication Year :
- 2008
-
Abstract
- Arsenate tolerance, As accumulation and As-induced phytochelatin accumulation were compared in populations of Silene paradoxa, one from a mine site enriched in As, Cu and Zn, the other from an uncontaminated site. The mine population was significantly more arsenate-tolerant. Arsenate uptake and root-to-shoot transport were slightly but significantly higher in the non-mine plants. The difference in uptake was quantitatively insufficient to explain the difference in tolerance between the populations. As accumulation in the roots was similar in both populations, but the mine plants accumulated much less phytochelatins than the non-mine plants. The mean phytochelatin chain length, however, was higher in the mine population, possibly due to a constitutively lower cellular glutathione level. It is argued that the mine plants must possess an arsenic detoxification mechanism other than arsenate reduction and subsequent phytochelatin-based sequestration. This alternative mechanism might explain at least some part of the superior tolerance in the mine plants.
- Subjects :
- Arsenic
Copper
Drug Tolerance
Environmental Monitoring methods
Glutathione analysis
Glutathione metabolism
Plant Roots chemistry
Plant Roots metabolism
Plant Shoots chemistry
Plant Shoots metabolism
Zinc
Arsenates toxicity
Industrial Waste
Mining
Phytochelatins metabolism
Silene metabolism
Soil Pollutants toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 0269-7491
- Volume :
- 152
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Environmental pollution (Barking, Essex : 1987)
- Publication Type :
- Academic Journal
- Accession number :
- 17707110
- Full Text :
- https://doi.org/10.1016/j.envpol.2007.07.002