Back to Search
Start Over
Involvement of MAPK/ERK kinase-ERK pathway in exogenous bFGF-induced Egr-1 binding activity enhancement in anoxia-reoxygenation injured astrocytes.
- Source :
-
Neuroscience bulletin [Neurosci Bull] 2007 Jul; Vol. 23 (4), pp. 221-8. - Publication Year :
- 2007
-
Abstract
- Objective: Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF.<br />Methods: Anoxia-reoxygenation treated astrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF.<br />Results: bFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF.<br />Conclusion: MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.
- Subjects :
- Animals
Animals, Newborn
Astrocytes metabolism
Cells, Cultured
Electrophoretic Mobility Shift Assay methods
Protein Binding drug effects
Rats
Time Factors
Astrocytes drug effects
Early Growth Response Protein 1 metabolism
Fibroblast Growth Factors pharmacology
Mitogen-Activated Protein Kinase Kinases metabolism
Oxygen metabolism
Signal Transduction physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1673-7067
- Volume :
- 23
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Neuroscience bulletin
- Publication Type :
- Academic Journal
- Accession number :
- 17687397
- Full Text :
- https://doi.org/10.1007/s12264-007-0033-y