Back to Search
Start Over
Copper complexation by fulvic acid affects copper toxicity to the larvae of the polychaete Hydroides elegans.
- Source :
-
Marine environmental research [Mar Environ Res] 2007 Dec; Vol. 64 (5), pp. 563-73. Date of Electronic Publication: 2007 Jun 16. - Publication Year :
- 2007
-
Abstract
- Copper toxicity is influenced by a variety of environmental factors including dissolved organic matter (DOM). We examined the complexation of copper by fulvic acid (FA), one of the major components of DOM, by measuring the decline in labile copper by anodic stripping voltammetrically (ASV). The data were described using a one-site ligand binding model, with a ligand concentration of 0.19micromol site mg(-1) C, and a logK' of 6.2. The model was used to predict labile copper concentration in a bioassay designed to quantify the extent to which Cu-FA complexation affected copper toxicity to the larvae of marine polychaete Hydroides elegans. The toxicity data, when expressed as labile copper concentration causing abnormal development, were independent of FA concentration and could be modeled as a logistic function, with a 48-h EC(50) of 58.9microgl(-1). However, when the data were expressed as a function of total copper concentration, the toxicity was dependent on FA concentration, with a 48-h EC(50) ranging from 55.6microgl(-1) in the no-FA control to 137.4microgl(-1) in the 20mgl(-1) FA treatment. Thus, FA was protective against copper toxicity to the larvae, and such an effect was caused by the reduction in labile copper due to Cu-FA complexation. Our results demonstrate the potential of ASV as a useful tool for predicting metal toxicity to the larvae in coastal environment where DOM plays an important role in complexing metal ions.
Details
- Language :
- English
- ISSN :
- 0141-1136
- Volume :
- 64
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Marine environmental research
- Publication Type :
- Academic Journal
- Accession number :
- 17643483
- Full Text :
- https://doi.org/10.1016/j.marenvres.2007.06.001