Back to Search
Start Over
The cabbage aphid: a walking mustard oil bomb.
- Source :
-
Proceedings. Biological sciences [Proc Biol Sci] 2007 Sep 22; Vol. 274 (1623), pp. 2271-7. - Publication Year :
- 2007
-
Abstract
- The cabbage aphid, Brevicoryne brassicae, has developed a chemical defence system that exploits and mimics that of its host plants, involving sequestration of the major plant secondary metabolites (glucosinolates). Like its host plants, the aphid produces a myrosinase (beta-thioglucoside glucohydrolase) to catalyse the hydrolysis of glucosinolates, yielding biologically active products. Here, we demonstrate that aphid myrosinase expression in head/thoracic muscle starts during embryonic development and protein levels continue to accumulate after the nymphs are born. However, aphids are entirely dependent on the host plant for the glucosinolate substrate, which they store in the haemolymph. Uptake of a glucosinolate (sinigrin) was investigated when aphids fed on plants or an in vitro system and followed a different developmental pattern in winged and wingless aphid morphs. In nymphs of the wingless aphid morph, glucosinolate level continued to increase throughout the development to the adult stage, but the quantity in nymphs of the winged form peaked before eclosion (at day 7) and subsequently declined. Winged aphids excreted significantly higher amounts of glucosinolate in the honeydew when compared with wingless aphids, suggesting regulated transport across the gut. The higher level of sinigrin in wingless aphids had a significant negative impact on survival of a ladybird predator. Larvae of Adalia bipunctata were unable to survive when fed adult wingless aphids from a 1% sinigrin diet, but survived successfully when fed aphids from a glucosinolate-free diet (wingless or winged), or winged aphids from 1% sinigrin. The apparent lack of an effective chemical defence system in adult winged aphids possibly reflects their energetic investment in flight as an alternative predator avoidance mechanism.
- Subjects :
- Animals
Aphids growth & development
Aphids metabolism
Brassica metabolism
Coleoptera growth & development
Coleoptera physiology
Feeding Behavior
Hemolymph metabolism
Larva enzymology
Larva growth & development
Larva metabolism
Nymph enzymology
Nymph growth & development
Nymph metabolism
Aphids enzymology
Brassica parasitology
Glucosinolates metabolism
Glycoside Hydrolases metabolism
Insect Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0962-8452
- Volume :
- 274
- Issue :
- 1623
- Database :
- MEDLINE
- Journal :
- Proceedings. Biological sciences
- Publication Type :
- Academic Journal
- Accession number :
- 17623639
- Full Text :
- https://doi.org/10.1098/rspb.2007.0237