Back to Search Start Over

Corticosteroids, 11beta-hydroxysteroid dehydrogenase isozymes and the rabbit choroid plexus.

Authors :
Sinclair AJ
Onyimba CU
Khosla P
Vijapurapu N
Tomlinson JW
Burdon MA
Stewart PM
Murray PI
Walker EA
Rauz S
Source :
Journal of neuroendocrinology [J Neuroendocrinol] 2007 Aug; Vol. 19 (8), pp. 614-20.
Publication Year :
2007

Abstract

The epithelial cells of the choroid plexus (CP) are responsible for cerebrospinal fluid (CSF) secretion into the ventricles of the brain. The balance between CSF production and drainage, in part, facilitates a normal intracranial pressure. The secretion of Na(+) and anions by the CP creates an osmotic gradient driving water into the ventricles. This is opposite to classical Na(+) transporting tissues, such as the kidney, where Na(+) and water reabsorption is mediated by 11beta-hydroxysteroid dehydrogenase type 2 that protects the mineralocorticoid receptor by abrogating active cortisol to inactive cortisone. In the human ocular ciliary epithelium, Na(+) and water secretion is dependent on a novel mediator of ciliary epithelial Na(+) transport, 11beta-HSD type 1 (11beta-HSD1), that generates intraocular cortisol. In a mechanism analogous to that of the embryologically related ocular ciliary epithelium, we propose that autocrine regulation of intracranial cortisol is dependent on 11beta-HSD1 expression in the CP epithelial cells. By conducting immunolocalisation studies on brains from New Zealand White Albino rabbits, we defined the expression of 11beta-HSD1 in the secretory CP epithelial cells. Enzyme assays performed on intact rabbit CP whole tissue explants confirmed predominant 11beta-HSD1 activity, generating cortisol that was inhibited by glycyrrhetinic acid (an 11beta-HSD inhibitor). Using the real time-polymerase chain reaction, rabbit CP tissue was found to express levels of 11beta-HSD1, glucocorticoid receptor alpha and serum and glucocorticoid-regulated kinase 1 mRNA comparable to that expressed in rabbit ocular ciliary body, thereby highlighting the similarity between these two tissues. Furthermore, an enzyme-linked immunosorbent assay of rabbit CSF revealed a median cortisol concentration of 1.7 nmol/l (range 1.4-4.3 nmol/l, n = 9). Our data have identified a functional 11beta-HSD1 within the CP, mediating intracranial cortisol bioavailability. Expression of 11beta-HSD1 may be fundamental in the regulation of CSF secretion and the local generation of cortisol may represent a pathophysiological mechanism underlying cortisol-dependent neuroendocrine diseases.

Details

Language :
English
ISSN :
0953-8194
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
Journal of neuroendocrinology
Publication Type :
Academic Journal
Accession number :
17620103
Full Text :
https://doi.org/10.1111/j.1365-2826.2007.01569.x