Back to Search Start Over

Simulations showed that validation of database-derived diagnostic criteria based on a small subsample reduced bias.

Authors :
Abrahamowicz M
Xiao Y
Ionescu-Ittu R
Lacaille D
Source :
Journal of clinical epidemiology [J Clin Epidemiol] 2007 Jun; Vol. 60 (6), pp. 600-9. Date of Electronic Publication: 2007 Mar 27.
Publication Year :
2007

Abstract

Objective: To evaluate alternative approaches to correct for bias due to inaccurate diagnostic criteria in database studies of associations.<br />Study Design and Settings: A simulation study of a hypothetical cohort of 10,000 subjects selected based on database-derived diagnostic criteria with positive predictive value (PPV) of either 53% or 80%. Analyses focus on the putative association between a drug and the time to a negative outcome. The association is confounded for "false positive" subjects, where the drug acts as a marker for unobserved frailty. First, we estimate the conventional multivariable Cox's Model 1. We then assume having in-depth evaluation of a fraction of subjects, which permits estimating the probabilities of having the disease for all subjects in the cohort. Alternative correction methods use the estimated probability as a confounder (Model 2), a modifier of the drug effect (Model 3), or an importance weight (Model 4).<br />Results: With a PPV of 53%, Models 1 and 2 induced about 50% underestimation bias for the drug effect. Interaction-based Model 3 yielded the least biased estimates (25% bias), whereas weighting by probability (Model 4) resulted in slightly more biased (33%), but more stable estimates.<br />Conclusion: Proposed methods help reducing bias due to sample contamination.

Details

Language :
English
ISSN :
0895-4356
Volume :
60
Issue :
6
Database :
MEDLINE
Journal :
Journal of clinical epidemiology
Publication Type :
Academic Journal
Accession number :
17493519
Full Text :
https://doi.org/10.1016/j.jclinepi.2006.07.016