Back to Search Start Over

A spike detection method in EEG based on improved morphological filter.

Authors :
Xu G
Wang J
Zhang Q
Zhang S
Zhu J
Source :
Computers in biology and medicine [Comput Biol Med] 2007 Nov; Vol. 37 (11), pp. 1647-52. Date of Electronic Publication: 2007 May 07.
Publication Year :
2007

Abstract

In this paper, a spike detection method is introduced. Traditional morphological filter is improved for extracting spikes from epileptic EEG signals and two key problems are addressed: morphological operation design and structure elements optimization. An average weighted combination of open-closing and close-opening operation, which can eliminate statistical deflection of amplitude, is utilized to separate background EEG and spikes. Then, according to the characteristic of spike component, the structure elements are constructed with two parabolas and a new criterion is put forward to optimize the structure elements. The proposed method is evaluated using normal and epileptic EEG data recorded from 12 test subjects. A comparison between the improved morphological filter, traditional morphological filter and wavelet analysis with Mexican hat function is presented, which indicates that the improved morphological filter is superior in restraining background activities. We demonstrate that the average detection rate of the improved morphological filter is much higher than that of the other two methods, and there is no false detection for normal EEG signals with the proposed method.

Details

Language :
English
ISSN :
0010-4825
Volume :
37
Issue :
11
Database :
MEDLINE
Journal :
Computers in biology and medicine
Publication Type :
Academic Journal
Accession number :
17482156
Full Text :
https://doi.org/10.1016/j.compbiomed.2007.03.005