Back to Search Start Over

Density-functional, density-functional tight-binding, and wave function calculations on biomolecular systems.

Authors :
Kubar T
Jurecka P
Cerný J
Rezac J
Otyepka M
Valdés H
Hobza P
Source :
The journal of physical chemistry. A [J Phys Chem A] 2007 Jul 05; Vol. 111 (26), pp. 5642-7. Date of Electronic Publication: 2007 Apr 06.
Publication Year :
2007

Abstract

Recently, two computational approaches that supply a density-functional-based quantum-chemical method with an empirical term accounting for London dispersion were introduced and found use in the studies of biomolecular systems, namely, DFT-D and SCC-DFTB-D. Here, we examine the performance and usability of these combined techniques for dealing with several tasks typically occurring in the research of biomolecules. The interaction energy of small biomolecular complexes agrees very well with the reference data yielded by correlated ab initio quantum chemical methods. In real-life studies aimed at interaction energy, structure, and infrared spectra, the mentioned methods provide results in good agreement with each other and with experiment (where available). The very favorable time demands of these approaches are discussed, and for each of them, a suitable area of use is proposed on the basis of the results of our analysis.

Details

Language :
English
ISSN :
1089-5639
Volume :
111
Issue :
26
Database :
MEDLINE
Journal :
The journal of physical chemistry. A
Publication Type :
Academic Journal
Accession number :
17411021
Full Text :
https://doi.org/10.1021/jp068858j