Back to Search Start Over

Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria.

Authors :
Peretz H
Naamati MS
Levartovsky D
Lagziel A
Shani E
Horn I
Shalev H
Landau D
Source :
Molecular genetics and metabolism [Mol Genet Metab] 2007 May; Vol. 91 (1), pp. 23-9. Date of Electronic Publication: 2007 Mar 23.
Publication Year :
2007

Abstract

Classical xanthinuria type II is an autosomal recessive disorder characterized by deficiency of xanthine dehydrogenase and aldehyde oxidase activities due to lack of a common sulfido-olybdenum cofactor (MoCo). Two mutations, both in the N-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS), were reported in patients with type II xanthinuria. Whereas the N-terminal domain of HMCS was demonstrated to have cysteine desulfurase activity, the C-terminal domain hypothetically transfers the sulfur to the MoCo. We describe the first mutation in the C-terminal domain of HMCS identified in a Bedouin-Arab child presenting with urolithiasis and in an asymptomatic Jewish female. Patients were diagnosed with type II xanthinuria by homozygosity mapping and/or allopurinol loading test. The Bedouin-Arab child was homozygous for a c.2326C>T (p.Arg776Cys) mutation, while the female patient was compound heterozygous for this and a novel c.1034insA (p.Gln347fsStop379) mutation in the N-terminal domain of HMCS. Cosegregation of the homozygous mutant genotype with hypouricemia and hypouricosuria was demonstrated in the Bedouin family. Haplotype analysis indicated that p.Arg776Cys is a recurrent mutation. Arg776 together with six surrounding amino acid residues were found fully conserved and predicted to be buried in homologous eukaryotic MoCo sulfurases. Moreover, Arg776 is conserved in a diversity of eukaryotic and prokaryotic proteins that posses a domain homologous to the C-terminal domain of HMCS. Our findings suggest that Arg776 is essential for a core structure of the C-terminal domain of the HMCS and identification of a mutation at this site may contribute clarifying the mechanism of MoCo sulfuration.

Details

Language :
English
ISSN :
1096-7192
Volume :
91
Issue :
1
Database :
MEDLINE
Journal :
Molecular genetics and metabolism
Publication Type :
Academic Journal
Accession number :
17368066
Full Text :
https://doi.org/10.1016/j.ymgme.2007.02.005