Back to Search Start Over

Effects of pre-ozonation on organic matter removal by coagulation with IPF-PACl.

Authors :
Liu HL
Wang DS
Shi BY
Wang M
Tang HX
Source :
Journal of environmental sciences (China) [J Environ Sci (China)] 2006; Vol. 18 (3), pp. 453-8.
Publication Year :
2006

Abstract

Ozone plays an important role as a disinfectant and oxidant in potable water treatment practice and is increasingly being used as a pre-oxidant before coagulation. The purpose of this study is to obtain insight into the mechanisms that are operative in pre-ozonized coagulation. Effects ofpre-ozonation on organic matter removal during coagulation with IPF-PACl were investigated by using PDA (photometric disperse analysis), apparent molecular weight distribution and chemical fractionation. The dynamic formation of flocs during coagulation process was detected. Changes of aquatic organic matter (AOM) structure resulted from the influence of pre-ozonation were evaluated. Results show that dosage of O3 and characteristics of AOM are two of the major factors influencing the performance of O3 on coagulation. No significant coagulation-aid effect of O3 was observed for all experiments using either AlCl3 or PACl. On the contrary, with the application of pre-ozonation, the coagulation efficiency of AlCl3 was significantly deteriorated, reflected by the retardation of floc formation, and the removal decreases of turbidity, DOC, and UV254. However, if PACl was used instead of AlCl3, the adverse effects of pre-ozonation were mitigated obviously, particularly when the O3 dosage was less than 0.69 (mg O3/mg TOC). The difference between removals of UV254 and DOC indicated that pre-ozonation greatly changed the molecular structure of AOM, but its capability of mineralization was not remarkable. Only 5% or so DOC was removed by pre-ozonation at 0.6-0.8 mg/L alone. Fractionation results showed that the organic products of pre-ozonation exhibited lower molecular weight and more hydrophilicity, which impaired the removal of DOC in the following coagulation process.

Details

Language :
English
ISSN :
1001-0742
Volume :
18
Issue :
3
Database :
MEDLINE
Journal :
Journal of environmental sciences (China)
Publication Type :
Academic Journal
Accession number :
17294639