Back to Search
Start Over
Assessment of developmental toxicity of vorinostat, a histone deacetylase inhibitor, in Sprague-Dawley rats and Dutch Belted rabbits.
- Source :
-
Birth defects research. Part B, Developmental and reproductive toxicology [Birth Defects Res B Dev Reprod Toxicol] 2007 Feb; Vol. 80 (1), pp. 57-68. - Publication Year :
- 2007
-
Abstract
- Background: The developmental toxicity potential of vorinostat (suberoylanilide hydroxamic acid [SAHA], ZOLINZA), a potent inhibitor of histone deacetylase (HDAC), was assessed in Sprague-Dawley rats and Dutch Belted rabbits. HDAC inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation, and apoptosis of tumor cells. Range-finding studies established oral dose levels of 5, 15, or 50 mg/kg/day and 20, 50, or 150 mg/kg/day in rats and rabbits, respectively.<br />Methods: Animals were dosed on Gestation Days 6-20 or 7-20, respectively, with litter/fetal parameters evaluated on GD 21 and 28, respectively. Separate studies evaluated toxicokinetic parameters at the mid- and high-dose levels.<br />Results: There was no maternal toxicity observed at the highest dose levels; however, hematology and serum biochemistry changes were characterized in the range-finding studies. Vorinostat did not induce morphological malformations in either rat or rabbit fetuses. In rats, drug-related developmental toxicity was observed only in the high-dose group and consisted of markedly decreased fetal weight and increases in fetuses with a limited number of skeletal variations. In rabbits, drug-related developmental toxicity was also observed only in the high-dose group and consisted of slightly decreased fetal weight and increases in fetuses with a short 13th rib and incomplete ossification of metacarpals. Maternal exposures to vorinostat based on AUC and Cmax values were comparable at the high-dose levels of both species. Rabbits tolerated higher dosages probably due to more extensive metabolism. Maternal concentrations of vorinostat were approximately 1,000-fold above the known in vitro HDAC inhibitory concentration.<br />Conclusions: Review of previous work with valproic acid, another HDAC inhibitor, suggest that the developmental toxicity profiles of these 2 compounds are not the result of HDAC inhibition but involve other mechanisms.<br /> ((c) 2007 Wiley-Liss, Inc.)
Details
- Language :
- English
- ISSN :
- 1542-9733
- Volume :
- 80
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Birth defects research. Part B, Developmental and reproductive toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 17294457
- Full Text :
- https://doi.org/10.1002/bdrb.20104