Back to Search
Start Over
Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.
- Source :
-
Biophysical journal [Biophys J] 2007 May 01; Vol. 92 (9), pp. 2996-3009. Date of Electronic Publication: 2007 Feb 09. - Publication Year :
- 2007
-
Abstract
- Experimental variables of optical tweezers instrumentation that affect RNA folding/unfolding kinetics were investigated. A model RNA hairpin, P5ab, was attached to two micron-sized beads through hybrid RNA/DNA handles; one bead was trapped by dual-beam lasers and the other was held by a micropipette. Several experimental variables were changed while measuring the unfolding/refolding kinetics, including handle lengths, trap stiffness, and modes of force applied to the molecule. In constant-force mode where the tension applied to the RNA was maintained through feedback control, the measured rate coefficients varied within 40% when the handle lengths were changed by 10-fold (1.1-10.2 Kbp); they increased by two- to threefold when the trap stiffness was lowered to one-third (from 0.1 to 0.035 pN/nm). In the passive mode, without feedback control and where the force applied to the RNA varied in response to the end-to-end distance change of the tether, the RNA hopped between a high-force folded-state and a low-force unfolded-state. In this mode, the rates increased up to twofold with longer handles or softer traps. Overall, the measured rates remained with the same order-of-magnitude over the wide range of conditions studied. In the companion article on pages 3010-3021, we analyze how the measured kinetics parameters differ from the intrinsic molecular rates of the RNA, and thus how to obtain the molecular rates.
Details
- Language :
- English
- ISSN :
- 0006-3495
- Volume :
- 92
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Biophysical journal
- Publication Type :
- Academic Journal
- Accession number :
- 17293410
- Full Text :
- https://doi.org/10.1529/biophysj.106.094052