Back to Search Start Over

Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.

Authors :
Wen JD
Manosas M
Li PT
Smith SB
Bustamante C
Ritort F
Tinoco I Jr
Source :
Biophysical journal [Biophys J] 2007 May 01; Vol. 92 (9), pp. 2996-3009. Date of Electronic Publication: 2007 Feb 09.
Publication Year :
2007

Abstract

Experimental variables of optical tweezers instrumentation that affect RNA folding/unfolding kinetics were investigated. A model RNA hairpin, P5ab, was attached to two micron-sized beads through hybrid RNA/DNA handles; one bead was trapped by dual-beam lasers and the other was held by a micropipette. Several experimental variables were changed while measuring the unfolding/refolding kinetics, including handle lengths, trap stiffness, and modes of force applied to the molecule. In constant-force mode where the tension applied to the RNA was maintained through feedback control, the measured rate coefficients varied within 40% when the handle lengths were changed by 10-fold (1.1-10.2 Kbp); they increased by two- to threefold when the trap stiffness was lowered to one-third (from 0.1 to 0.035 pN/nm). In the passive mode, without feedback control and where the force applied to the RNA varied in response to the end-to-end distance change of the tether, the RNA hopped between a high-force folded-state and a low-force unfolded-state. In this mode, the rates increased up to twofold with longer handles or softer traps. Overall, the measured rates remained with the same order-of-magnitude over the wide range of conditions studied. In the companion article on pages 3010-3021, we analyze how the measured kinetics parameters differ from the intrinsic molecular rates of the RNA, and thus how to obtain the molecular rates.

Details

Language :
English
ISSN :
0006-3495
Volume :
92
Issue :
9
Database :
MEDLINE
Journal :
Biophysical journal
Publication Type :
Academic Journal
Accession number :
17293410
Full Text :
https://doi.org/10.1529/biophysj.106.094052