Back to Search
Start Over
Speckle-tracking echocardiography correctly identifies segmental left ventricular dysfunction induced by scarring in a rat model of myocardial infarction.
- Source :
-
American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2007 Jun; Vol. 292 (6), pp. H2809-16. Date of Electronic Publication: 2007 Feb 02. - Publication Year :
- 2007
-
Abstract
- Speckle-tracking echocardiography (STE) uses a two-dimensional echocardiographic image to estimate two orthogonal strain components. The aim of this study was to assess sensitivity of circumferential (S(circ)) and radial (S(rad)) strains to infarct-induced left ventricular (LV) remodeling and scarring of the LV in a rat. To assess the relationship among S(circ), S(rad), and scar size, two-dimensional echocardiographic LV short-axis images (12 MHz transducer, Vivid 7 echo machine) were collected in 34 Lewis rats 4 to 10 wk after ligation of the left anterior descending artery. Percent segmental fibrosis was assessed from histological LV cross sections stained by Masson trichrome. Ten normal rats served as echocardiographic controls. S(circ) and S(rad) were assessed by STE. Histological data showed consistent scarring of anterior and lateral segments with variable extension to posterior and inferior segments. Both S(circ) and S(rad) significantly decreased after myocardial infarction (P<0.0001 for both). As anticipated, S(circ) and S(rad) were lowest in the infarcted segments. Multiple linear regression showed that segmental S(circ) were similarly dependent on segmental fibrosis and end-systolic diameter (P<0.0001 for both), whereas segmental S(rad) measurements were more dependent on end-systolic diameter (P<0.0001) than on percent fibrosis (P<0.002). STE correctly identifies segmental LV dysfunction induced by scarring that follows myocardial infarction in rats.
- Subjects :
- Animals
Coronary Vessels surgery
Disease Models, Animal
Fibrosis
Heart Ventricles diagnostic imaging
Ligation
Linear Models
Myocardial Infarction diagnostic imaging
Myocardial Infarction pathology
Myocardial Infarction physiopathology
Observer Variation
Predictive Value of Tests
Rats
Rats, Inbred Lew
Reproducibility of Results
Research Design
Sensitivity and Specificity
Stress, Mechanical
Systole
Ventricular Dysfunction, Left etiology
Ventricular Dysfunction, Left pathology
Ventricular Dysfunction, Left physiopathology
Echocardiography methods
Image Interpretation, Computer-Assisted
Myocardial Infarction complications
Ventricular Dysfunction, Left diagnostic imaging
Ventricular Remodeling
Subjects
Details
- Language :
- English
- ISSN :
- 0363-6135
- Volume :
- 292
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- American journal of physiology. Heart and circulatory physiology
- Publication Type :
- Academic Journal
- Accession number :
- 17277023
- Full Text :
- https://doi.org/10.1152/ajpheart.01176.2006