Back to Search Start Over

Reorganization energy of the CuA center in purple azurin: impact of the mixed valence-to-trapped valence state transition.

Authors :
Farver O
Hwang HJ
Lu Y
Pecht I
Source :
The journal of physical chemistry. B [J Phys Chem B] 2007 Jun 21; Vol. 111 (24), pp. 6690-4. Date of Electronic Publication: 2007 Feb 03.
Publication Year :
2007

Abstract

Mixed valence (MV) coordination compounds play important roles in redox reactions in chemistry and biology. Details of the contribution of a mixed valence state to protein electron transfer (ET) reactivity such as reorganization energy, however, have not been experimentally defined. Herein we report measurements of reorganization energies of a binuclear CuA center engineered into Pseudomonas aeruginosa azurin that exhibits a reversible transition between a totally delocalized MV state at pH 8.0 and a trapped valence (TV) state at pH 4.0. The reorganization energy of a His120Ala variant of CuA azurin that displays a TV state at both the above pH values has also been determined. We found that the MV-to-TV state transition increases the reorganization energy by 0.18 eV, providing evidence that the MV state of the CuA center has lower reorganization energy than its TV counterpart. We have also shown that lowering the pH from 8.0 to 4.0 results in a similar (approximately 0.4 eV) decrease in reorganization energy for both blue (type 1) and purple (CuA) azurins, even though the reorganization energies of the two different copper centers are different at a given pH. These results suggest that the MV state plays only a secondary role in modulation of the ET reactivity via the reorganization energy, as compared to that of the driving force.

Details

Language :
English
ISSN :
1520-6106
Volume :
111
Issue :
24
Database :
MEDLINE
Journal :
The journal of physical chemistry. B
Publication Type :
Academic Journal
Accession number :
17274649
Full Text :
https://doi.org/10.1021/jp0672555