Back to Search
Start Over
The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull.
- Source :
-
Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2007 Jul; Vol. 82 (1), pp. 169-78. - Publication Year :
- 2007
-
Abstract
- The influence of tethering silicon microelectrode arrays on the cortical brain tissue reaction was compared with that of untethered implants placed in the same location by identical means using immunoflourescent methods and cell type specific markers over indwelling periods of 1-4 weeks. Compared with untethered, freely floating implants, tethered microelectrodes elicited significantly greater reactivity to antibodies against ED1 and GFAP over time. Regardless of implantation method or indwelling time, retrieved microelectrodes contained a layer of attached macrophages identified by positive immunoreactivity against ED1. In the tethered condition and in cases where the tissue surrounding untethered implants had the highest levels of ED1+ and GFAP+ immunoreactivity, the neuronal markers for neurofilament 160 and NeuN were reduced. Although the precise mechanisms are unclear, the present study indicates that simply tethering silicon microelectrode arrays to the skull increases the cortical brain tissue response in the recording zone immediately surrounding the microelectrode array, which signals the importance of identifying this important variable when evaluating the tissue response of different device designs, and suggests that untethered or wireless devices may elicit less of a foreign body response.<br /> (Copyright 2007 Wiley Periodicals, Inc.)
- Subjects :
- Animals
Brain cytology
Cell Count
Ectodysplasins metabolism
Electric Stimulation instrumentation
Electric Stimulation methods
Glial Fibrillary Acidic Protein metabolism
Immunohistochemistry
Macrophages cytology
Male
Materials Testing
Neurons cytology
Prostheses and Implants
Rats
Brain physiology
Brain surgery
Microelectrodes
Silicon
Subjects
Details
- Language :
- English
- ISSN :
- 1549-3296
- Volume :
- 82
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of biomedical materials research. Part A
- Publication Type :
- Academic Journal
- Accession number :
- 17266019
- Full Text :
- https://doi.org/10.1002/jbm.a.31138