Back to Search Start Over

Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments.

Authors :
del Prete MJ
Vernal R
Dolznig H
Müllner EW
Garcia-Sanz JA
Source :
RNA (New York, N.Y.) [RNA] 2007 Mar; Vol. 13 (3), pp. 414-21. Date of Electronic Publication: 2007 Jan 19.
Publication Year :
2007

Abstract

Using cell lines and primary cells, it has been shown that translation control plays a key role regulating gene expression during physiological and pathological conditions. The relevance of this type of regulation in vivo (tissues, organs) remains to be elucidated, due to the lack of an efficient method for polysome-bound fractionation of solid tissue RNA samples. A simple and efficient method is described, in which tissue samples were pulverized in liquid nitrogen and lysed with NP40-lysis buffer in the presence of the RNAse inhibitors RNAsin and vanadyl-ribonucleoside complex. After cell lysis, the cytoplasmic extract was loaded into sucrose gradients, fractionated, and RNA prepared from each fraction. The obtained RNA was reverse transcribed with a low efficiency, a problem that was overcome by purifying polyA+ RNA. Aiming to use small quantities of solid tissue samples (10-20 mg/sample), polyA+ RNA purification was discarded, and the different components were individually screened for a negative effect on reverse transcription. The polysaccharide heparin, which is present as a nonspecific RNAse inhibitor, inhibits reverse transcriptase activity, and must be removed from RNA samples for an efficient reaction. Heparin was successfully removed by precipitation of the RNA with lithium chloride, as demonstrated by the reversal of the inhibition on RT-PCR reactions. In summary, we present a reliable method allowing us to prepare high-quality polysome-bound mRNA from small quantities of liquid-nitrogen-frozen solid tissue samples from both human and mouse origin, amenable for Northern blotting, RT-PCR reactions, and expression profiling analyses.

Details

Language :
English
ISSN :
1355-8382
Volume :
13
Issue :
3
Database :
MEDLINE
Journal :
RNA (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
17237355
Full Text :
https://doi.org/10.1261/rna.79407