Back to Search Start Over

Max is acetylated by p300 at several nuclear localization residues.

Authors :
Faiola F
Wu YT
Pan S
Zhang K
Farina A
Martinez E
Source :
The Biochemical journal [Biochem J] 2007 May 01; Vol. 403 (3), pp. 397-407.
Publication Year :
2007

Abstract

Max is a ubiquitous transcription factor with a bHLHZip [basic HLH (helix-loop-helix) leucine zipper] DNA-binding/dimerization domain and the central component of the Myc/Max/Mad transcription factor network that controls cell growth, proliferation, differentiation and apoptotic cell death in metazoans. Max is the obligatory DNA-binding and dimerization partner for all the bHLHZip regulators of the Myc/Max/Mad network, including the Myc family of oncoproteins and the Mad family of Myc antagonists, which recognize E-box DNA elements in the regulatory regions of target genes. Max lacks a transcription regulatory domain and is the only member of the network that efficiently homodimerizes. Binding of Max homodimers to E-box elements suppresses the transcription regulatory functions of its network partners and of other non-network E-box-binding regulators. In contrast with its highly regulated partners, Max is a constitutively expressed and phosphorylated protein. Phosphorylation is, however, the only Max post-translational modification identified so far. In the present study, we have analysed Max posttranslational modifications by MS. We have found that Max is acetylated at several lysine residues (Lys-57, Lys-144 and Lys-145) in mammalian cells. Max acetylation is stimulated by inhibitors of histone deacetylases and by overexpression of the p300 co-activator/HAT (histone acetyltransferase). The p300 HAT also directly acetylates Max in vitro at these three residues. Interestingly, the three Max residues acetylated in vivo and in vitro by p300 are important for Max nuclear localization and Max-mediated suppression of Myc transactivation. These results uncover novel post-translational modifications of Max and suggest the potential regulation of specific Max complexes by p300 and reversible acetylation.

Details

Language :
English
ISSN :
1470-8728
Volume :
403
Issue :
3
Database :
MEDLINE
Journal :
The Biochemical journal
Publication Type :
Academic Journal
Accession number :
17217336
Full Text :
https://doi.org/10.1042/BJ20061593