Back to Search Start Over

Insulin rapidly inhibits insulin-like growth factor-binding protein-1 gene expression in H4-II-E rat hepatoma cells.

Authors :
Orlowski CC
Ooi GT
Brown DR
Yang YW
Tseng LY
Rechler MM
Source :
Molecular endocrinology (Baltimore, Md.) [Mol Endocrinol] 1991 Aug; Vol. 5 (8), pp. 1180-7.
Publication Year :
1991

Abstract

The insulin-like growth factor-binding proteins (IGFBPs) are thought to determine the distribution of IGF-I and IGF-II between the blood and tissue compartments and to modulate their biological activities. A dynamic metabolic role for one of the IGFBPs, IGFBP-1, is suggested by the fact that plasma IGFBP-1 was increased after fasting and diabetes and rapidly decreased by refeeding or insulin treatment, respectively. IGFBP-1 mRNA also is increased in the livers of diabetic rats and decreased by insulin treatment. To understand the molecular basis for this regulation, we have examined the effects of insulin on IGFBP-1 and IGFBP-1 mRNA in the H4-II-E cell line derived from the well differentiated H35 rat hepatoma. IGFBP-1, identified by ligand blotting and immunoblotting, is the major IGFBP in H4-II-E cells. Incubation of H4-II-E cells with insulin for 24 h decreased IGFBP-1 in the culture medium by approximately 50%. Inhibition was observed at physiological concentrations of insulin (ED50, less than 0.5 nM), but not at higher concentrations of IGF-II. These results, together with the fact that H4-II-E cells do not possess IGF-I receptors with which insulin might cross-react, suggest that insulin acts via the insulin receptor. Insulin inhibited IGFBP-1 in the medium by 80% in the absence of glucose, suggesting that the inhibition is a direct effect of insulin; glucose exerted a smaller independent effect in the absence of insulin. Insulin decreased IGFBP-1 mRNA in H4-II-E cells by 50% within 1 h and by 90% after 2-12 h of incubation. Nuclear run-on transcription assays indicated a corresponding decrease in the rate of IGFBP-1 gene transcription. Pretreatment of H4-II-E cells with dexamethasone stimulated IGFBP-1 transcription and increased steady state IGFBP-1 mRNA; stimulation was abolished by insulin treatment, indicating that inhibition by insulin was dominant over induction by dexamethasone. Thus, insulin, acting through the insulin receptor, rapidly decreases the abundance of IGFBP-1 mRNA in H4-II-E cells. Regulation occurs at least in part at the level of gene transcription. We propose that regulation of IGFBP-1 synthesis is an important component of the regulation of IGFBP-1 by insulin in vivo.

Details

Language :
English
ISSN :
0888-8809
Volume :
5
Issue :
8
Database :
MEDLINE
Journal :
Molecular endocrinology (Baltimore, Md.)
Publication Type :
Academic Journal
Accession number :
1719386
Full Text :
https://doi.org/10.1210/mend-5-8-1180